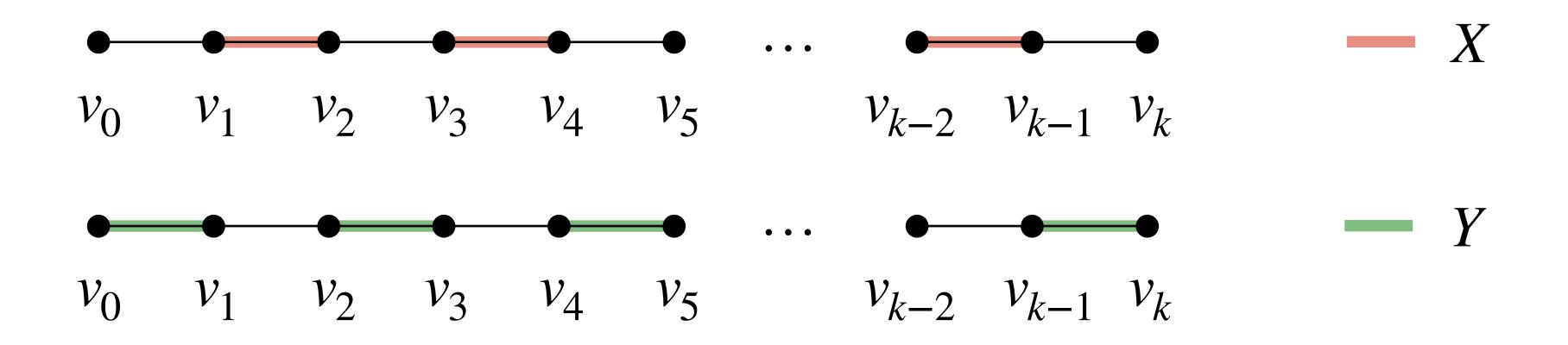
Lecture 33

Matching (contd.), Hall's Marriage Theorem

Berge's Theorem

Theorem: A matching *M* is maximum if and only if there is no *M*-augmenting path. **Proof:** (\implies) If there is an *M*-augmenting path, then *M* is not a maximum matching.

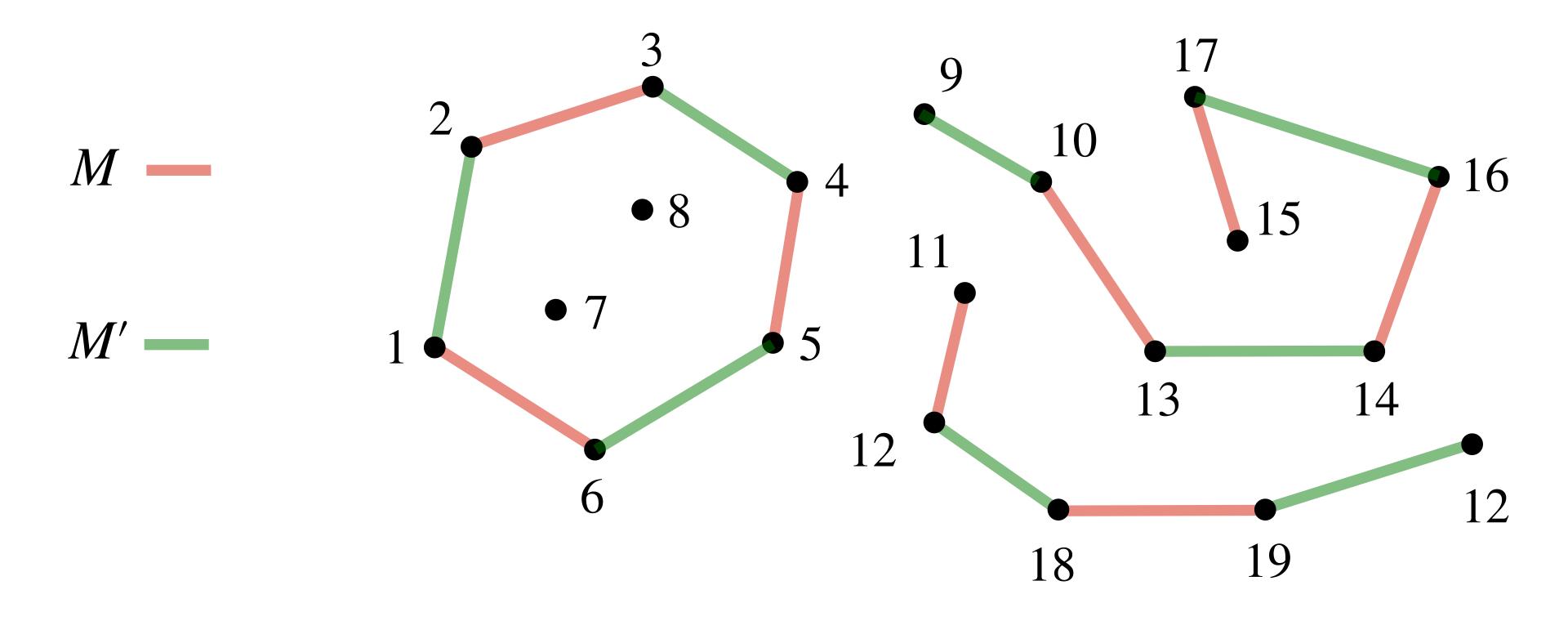
Let P be an M-augmenting path.



Let X be the set of edges in P that are in M and let Y be the rest of the edges. Then $(M \setminus X) \cup Y$ will a be a larger matching than M.

Berge's Theorem

Theorem: A matching M is maximum if and only if there is no M-augmenting path. **Proof:** (\Leftarrow) If there is no *M*-augmenting path, then *M* is a maximum matching. Suppose M', not M is a maximum matching of G = (V, E). Consider the graph made of V and edges $M \oplus M'$.

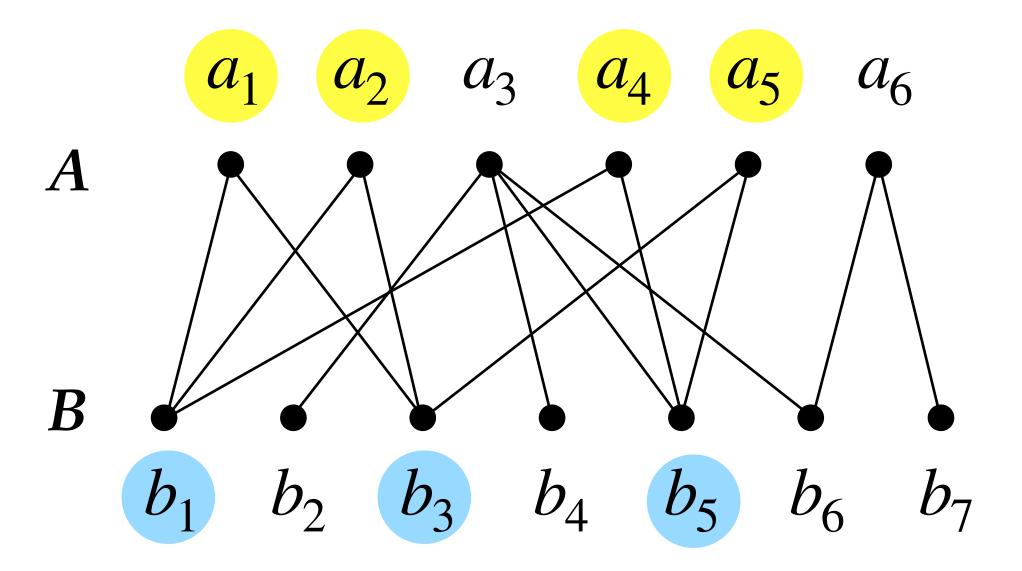


Berge's Theorem

Theorem: A matching M is maximum if and only if there is no M-augmenting path. **Proof:** (\Leftarrow) Connected components in $G' = (V, M \oplus M')$ can only be even length cycles or even length paths that alternate between edges of M and M'. Therefore, $M \oplus M'$ contains equal number of edges from M and M'. Hence, |M| = |M'|, a contradiction.

Matching in Bipartite Graphs

Is there a matching in the below graph that covers A?No, because $\{a_1, a_2, a_4, a_5\}$ has only $\{b_1, b_3, b_5\}$ as neighbours.



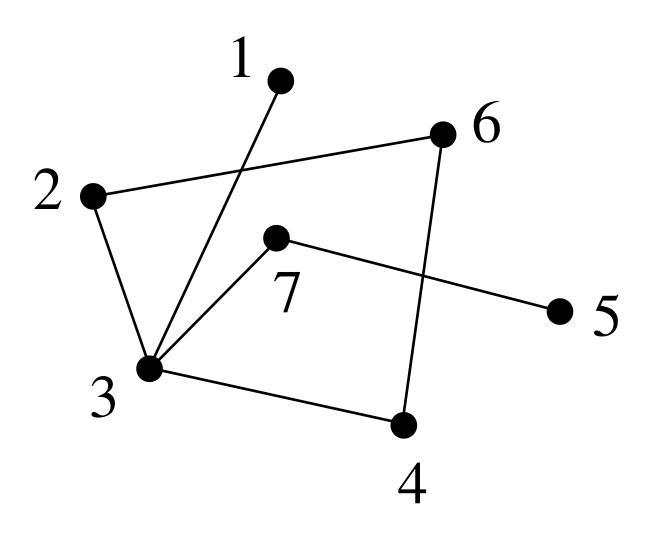
Observation: If a matching can cover A, then every subset of A has sufficient neighbours.

Neighbours of a Set of Vertices

Definition: Let G = (V, E) be a graph. If $X \subseteq V$, the neighbours of X, is the set

 $N(X) = \{ v \in V \setminus X \mid v \text{ is adjacent to some point in } X \}$

Example:



 $N(\{2,3\}) = \{6,1,7,4\}$ $N(\{6,4\}) = \{2,3\}$

Hall's Marriage Theorem

covers A if and only if $|X| \leq |N(X)|$ for all $X \subseteq A$.

an M-augmenting path. Hence, a contradiction.

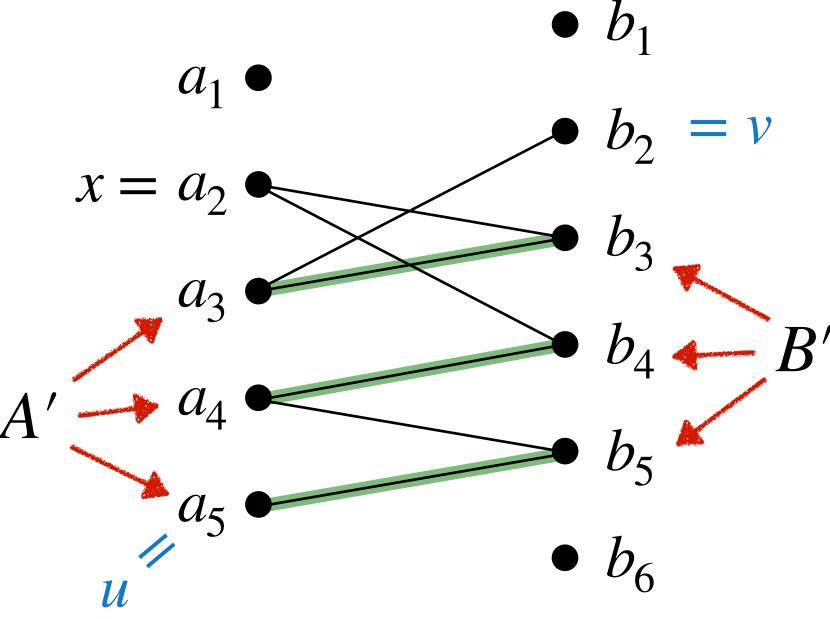
Let A' be the subset of A that can be reached from x using a non-trivial M-alternating path.

Let $B' \subseteq B$ be the set of penultimate vertices of such paths.

Clearly, |A'| = |B'|.

By marriage condition, \exists an edge from a vertex \boldsymbol{u} in $A' \cup \{x\}$ to a vertex \boldsymbol{v} in $B \setminus B'$.

- **Theorem:** Let G = (V, E) be a bipartite graph with partition (A, B). G has a matching that
- **Proof:** (\Leftarrow) Let M be a maximum matching. We claim that M covers A.
 - **Goal:** We will show that if M does not cover a vertex $x \in A$, then there exists



Hall's Marriage Theorem

covers A if and only if $|X| \leq |N(X)|$ for all $X \subseteq A$.

Proof: (\Leftarrow) Since $u \in A' \cup x$, there must be an alternating path *P* from x to u.

- $P \cdot \langle u, v \rangle$ is a path because ... ?
- ► *v* is uncovered:

If v was covered by an edge $\{v, y\}$, then $P.\langle u, v \rangle.\langle v, y \rangle$ would be an alternating path from x to y, putting v in B'. A contradiction.

P. $\langle u, v \rangle$ is an *M*-augmenting path. Hence, *M* cannot not cover *x*.

- **Theorem:** Let G = (V, E) be a bipartite graph with partition (A, B). G has a matching that

 - We show now that $P \cdot \langle u, v \rangle$ is an *M*-augmenting path using the fact that $v \notin B'$.

